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Spectral-Domain Analysis of Harmonic
Effects in Superconducting
Quasiparticle Mixers

STAFFORD WITHINGTON anp ERIK L. KOLLBERG, SENIOR MEMBER, IEEE

Abstract —An algorithm has been developed for calculating the har-
monic performance of superconducting quasiparticle millimeter-wave mix-
ers. The scheme uses harmonic balance to determine the steady-state
waveform of the large-amplitude voltage which is induced across the tunnel
junction by the local oscillator source. A key feature of the new algorithm
is that the large-signal tunneling-current’ calculations are dome in the
frequency domain rather than in the time domain, and this approach leads
to numerically efficient computer simulations. The superiority of the
spectral-domain method is particularly pronounced when modeling mixers
which incorporate high-quality tunnel junctions with very sharp dc nonlin-
earities. A simplified mixer simulation has been performed to determine
the range of wCR products for which harmonic effects are likely to be
important. An wCR product of between 3 and 4 appears to be a good
compromise between being able to tune out the capacitive reactance at the
signal frequency and avoiding the deleterious effects of inadvertent har-
monic pumping,

I. INTRODUCTION

HE OPERATION of a superconducting quasiparticle

mixer can be modeled by using the quantum theory of
mixing developed by Tucker [1]. This theory predicts that a
mixer will cease to behave classically when the voltage
width of the dc nonlinearity is smaller than or comparable
with the photon energy #w/e of the incident radiation.
The transition from classical to quantum behavior has
some remarkable consequences, including the appearance
of quantum-limited noise temperatures %w/k and conver-
sion gain [2], both of which have been seen experimentally
[3]-[5]. A comprehensive review of Tucker’s quantum the-
ory of mixing .and its experimental verification has been
published recently [6].

In almost every case the quantum theory of mixing has
been applied by assuming that the large-signal local oscil-
lator voltage appearing across the junction is sinusoidal, or
equivalently that the capacitance C of the junction shorts
out harmonic currents. This idealization allows the equa-
tions describing the mixing procéss to be expressed in a
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relatively simple form. However, the simplified version of
the theory is only applicable provided that the susceptance
wC of the tunnel junction is several times that of the
normal-state conductance 1/R. There is considerable ex-
penmental evidence [7], in the form of unexpectedly low
conversion efficiencies and high noise temperatures, that
harmonic effects are important for wCR products of less
than about 4. Conversely, there are complications associ-
ated with using junctions having wCR products much
greater than 4, because the capacitive reactance must be
neutralized at the signal frequency; yet it is difficult to
construct broad-band matching networks at millimeter
wavelengths. If the full potential of the quasiparticle mixer
is to be realized, then a theoretical technique is required
whereby the harmomc effects which occur in low-capaci-
tance tunnel-Juncuon mixers can be analyzed. Further
motivation for developing such a technique comes from
the need to model subharmonically pumped mixers {8].

This paper presents an algorithm for calculating the
harmonic performance of superconducting quasiparticle
mixers. The scheme uses harmonic balance [9] to deter-
mine the steady-state waveform of the large-amplitude
voltage induced across the tunnel junction by the local
oscillator source. A key feature of the algorithm presented
in this paper is that the large-signal tunneling-current
calculations are done in the frequency domain. This ap-
proach is in contrast to the work of Hicks, Feldman, and
Kerr [10], where the calculations were done in the time
domain. The spectral-domain method is considerably faster
when 1mp1emented as a computer program, especially when
modeling mixers Wthh incorporate high-quality tunnel
junctions having very sharp dc nonlinearities.

II. LARGE-SIGNAL ANALYSIS

A. The Mixer Circuit

Fig. 1 shows an equivalent circuit which is suitable for
analyzing the response of a superconducting tunnel junc-
tion when it is excited by a large-a rnphtude local oscillator
voltage. The voltage generator and' its ‘series impedance
represent the local oscillator source referenced to the elec-
trodes of the tunnel junction, and‘ the parallel impedance
takes account of the geometric capacitance of the tunnel
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Fig. 1. A large-signal equivalent circuit of a superconducting quasipar-
ticle mixer.

barrier. This simple circuit adequately reflects the principal
features of quasiparticle mixers while limiting the complex-
ity of the large-signal analysis; consequently it is suitable
for introductory simulations. However, it may be desirable
when modeling actual mixers to consider more elaborate
embedding networks and these analyses can easily be done
by extending the basic method described below.

The voltage source shown in Fig. 1 is assumed to be
sinusoidal with an angular frequency w. This source in-
duces periodic potentials throughout the circuit but in
general these are not sinusoidal owing to the influence of
the nonlinear tunnel barrier. In the steady state, the vari-
ous voltages and currents can be expanded as Fourier
series having the generic form

o)1 |V

i(t) | 2,211,

Particular variables are identified by attaching superscripts
to the Fourier coefficients, and normalization is denoted
by a tilde. For example in Fig. 1, ¥S is a vector whose
elements I7PS (p=0, £1, £2,---) are the Fourier coeffi-
cients of the normalized local oscillator voltage. Similarly,
Z% is a vector whose elements Z5 (p=0, £1, £2,---)
are the normalized harmonic impedances of the local oscil-
lator source. A variable with its subscript missing is a
vector representing a number of harmonic frequencies. In
this paper, all of the electrical quantities are normalized to
the dc characteristic of the tunnel junction. The circuit
voltages are scaled to a bias voltage V, which is arbitrarily
chosen close to the energy gap, and the circuit currents are
scaled to the current I, which would flow as a result of V,
being applied to the normal-state resistance of the junction
(I,=V,/R). For convenience, these reference quantities
can be called the gap voltage and the gap current, but they
do not have any particular physical significance. One ad-
vantage of normalizing the voltages and currents in this
way is that the circuit impedances become normalized to
the normal-state resistance of the junction. Hence it is
possible to analyze the performances of actual mixers with
only a limited number of standard numerical models.

Jpwt

1)

B. The Harmonic Balance Procedure

The first step in analyzing a mixer circuit is to determine
the steady-state waveform of the large-amplitude voltage
V'~ induced across the tunnel junction by the local oscilla-
tor. Once this information is known it is possible to
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calculate the small-signal admittance matrix. Determining
the vector V¥ is in general a difficult nonlinear problem
because it is necessary to search for a solution which
simultaneously satisfies the circuit equations at every har-
monic frequency. Various harmonic balance techniques
have been devised for handling this type of problem [11]
but the relaxation method of Hicks and Khan [12], [13] is
particularly easy to realize and therefore it is the one used
here.

To implement the procedure, it is first necessary to
partition the circuit into two subnetworks, one containing
the linear embedding circuit and the other the nonlinear
tunnel junction. The harmonic relaxation method is an
iterative process which in one form seeks to match the
Fourier components of the voltages, across the branch
connecting the two subnetworks, on either side of the
partition. These are termed the linear voltage V* and the
nonlinear voltage V", and they must be equal when a
satisfactory solution has been found. It is convenient to
replace the local oscillator voltage source and the linear
embedding network with a Thévenin source which has an
open-circuit voltage of

. I}SZ"J
V=15 ) @)
and an internal impedance of
. AV
2=y G)

The harmonic balance procedure begins by making a rough
estimate of the nonlinear voltage V7. This waveform is
simply taken to be the open-circuit voltage of the Thévenin
source and therefore the first guess is purely sinusoidal.
The initial guess can be written

(7), =77 @
where the subscript outside the parentheses identifies the
iteration number. The next step is to use this voltage to
calculate the associated quasiparticle current / N_ Continu-
ity requires that IV be equal to the current following out

of the linear embedding network — I; consequently the
associated linear voltage is given by

(VL)lzﬁT_(fN)lzT- (5)
(V%) can then be compared with (V7), to see if a valid
solution has been found. At this early stage they are

generally not equal and the nonlinear voltage is reesti-
mated by using '

(VM) s =P(VE)+(1-P)(V"),, 0<P<l (6)

where P is a convergence parameter. The whole procedure
is then repeated until a self-consistent solution is found or
until a predefined number of iterations have been exe-
cuted.

The voltage-update method has been chosen in prefer-
ence to the current-update method for two reasons. First,
Tucker’s theory allows the tunneling current to be calcu-
lated directly from the impressed voltage but the current-
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Fig. 2. The normalized dc characteristic [3,(¥) of a_Nb/AlOx/Nb
tunnel junction. The Kramers-Kronig transform 1), (V;) of this func-
tion is also shown.

update method requires the current to be the independent
variable. Second, the impedances presented to the tunnel
barrier at high harmonic frequencies are dominated by the
capacitance of the junction, and therefore they are close to
being short circuits. When this is the case, the voltage-
update method converges faster than the current-update
method. An assessment of the convergence properties of
the two closely related schemes can be found in the origi-
nal work of Hicks and Khan [12].

C. Time-Dowmain Analysis

The harmonic balance procedure requires that the peri-
odic quasiparticle current can be calculated from the peri-
odic voltage appearing across the junction. It will be
shown below that it is numerically inefficient to do this
calculation in the time domain.

A quasiparticle tunnel junction is characterized in the
time domain by a response function J(¢) [14] which has
the normalized form

- J opteot . [
11/(t) W'[—oo l:Idc(wg
where w, is the angular frequency associated with the
normalizing gap voltage (w, = eV, /#), and I(Vy) is the
normalized dec characteristic of the tunnel barrier. For
example, Fig. 2 shows the normalized characteristic of a
Nb/AlOx/Nb junction [15). A perfect device with an
infinitely sharp nonlinearity has a response function ’(#)
which oscillates at the gap frequency. Furthermore, the
amplitude of '(¢) falls off inversely with time at large
times. The instantaneous tunneling current is therefore
influenced by the voltage which existed across the junction
at very long times in the past. However, a real junction has
a nonlinearity which is smeared over a finite voltage range,
and the question arises as to how far into the past the
voltage must be considered when calculating the tunneling
current. Insight into this question can be gained by multi-
plying the response function of the perfect barrier by a
Gaussian function having a half-width of A¢, giving

F0) =Py,

4

w ’
- ——}e“’“”dw’ (7)

Wy

(8)

Equation 7 suggests that, to a first approximation, the dc
characteristic associated with the modified response func-
tion is effectively the ideal dc characteristic convolved with
the Fourier transform of the modifying function, and this
transform is a Gaussian having a half-width Aw’ of 2 /Az.
The effect of the convolution is to smear out the infinitely
sharp nonlinearity. Hence, the voltage width AI7dc of the
transition region becomes approximately 1/Atf,, where f,
is the gap frequency. This last expression has been derived
by truncating the Gaussian, with which the ideal dc char-
acteristic is convolved, at the 5 percent level. The number
N of gap frequency cycles into the past for which the
response function must be considered is 1.7AV,,, where the

_time-domain Gaussian has also been truncated at the 5

percent level in order to prevent spurious effects due to
Gibb’s phenomena. For example, a lead alloy junction
may have a AV,_ of typically 0.15; therefore 12 cycles of its
response function are sufficient to represent the junction.
If each cycle is sampled at ten points, then a 120 point
analysis is required in order to calculate the tunneling
current at a single instant in time. A niobium junction may
have a AV, of typically 0.03; consequently 57 cycles of its
response function must be considered, and if each is sam-
pled at ten points then a 570 point analysis is required for
every tunneling current calculation. It is evident from this
discussion that the computing time required for a single
harmonic balance iteration increases dramatically as the
quality of the junction is improved.

D. Frequency-Domain Analysis

It will now be shown how the quasiparticle current can
be calculated very much more efficiently in the frequency
domain. The periodic voltage appearing across the junc-
tion modulates the quasiparticle energy eigenstates on one
side of the barrier by the phase factor

f(t) = e/l wl0 ()= Volar

)
where the effect of the dc bias voltage ¥, is removed. This
phase factor can be represented in the spectral domain by
the Fourier transform

1 i+
W(w) = 2—7—ij F(t)er dt. (10)

Moreover, the steady-state voltage across the junction is
periodic, and therefore it can be written

(11)

M)y =Vy+ X VY |cos(pot’+¢,)
r=1

where ¢, = / VY and V,=VN/2. The phase factor which

results from this modulation is found by substituting (11)

into (9), giving

() = izt (12)
where
R ANA .
» e K,PH
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Fig. 3. The spectra Wy(w’) of the phase factors associated with the first

four harmonics of the periodic large-signal terminal voltage.

and V™ is the normalized photon voltage of the pth
harmonic. Similarly, it is convenient to use

o7

5

(14)

a
w

for the local oscillator source voltage. By using the
Jacobi—Anger equality, (12) can be written in the form

f(1) = Hl L A e (15)
P=ln=—-00

where the complex coefficients are given by

A, =T (a,)e .

(16)

Expanding (15) and retaining only the first J harmonics
leads to

J
1= Tl &) 1)

where
(18)

The function g,(¢) represents the influence of the pth
harmonic on the overall phase factor, and the spectrum
W,(w') of this contribution is found by substituting (18) in
to (10), giving

+ o0
8(1)= L Ao

fi=—o0

+ o0

W)= L 4,3~ npo).

n=—o0

(19)

The spectra associateéd with the first four harmonics are
shown schematically in, Fig. 3. Multiplication in the time
domain is equivalent to ¢onvolution in the frequency do-
main; therefore the spectrum of the overall phase factor
becomes

W(w) =Wi()xWy(w') - - Wy (o)

where the asterisk denotes convolution.

(20)
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For example, suppose that the voltage across the junc-
tion consists of only the fundamental and the second
harmonic. The spectrum of the overall phase factor be-
comes

W) = [ W -wd @)
where

W)= ¥ And(u-no)

R=—00

(22)

and

Wy(w' —u) = +i° A8 (0 —u—2me). (23)

n=—0o0

Assuming that the resulting spectrum has the form

+ o0
W(w)= Y C(o'—kw) (24)
k=—c0
it can be shown that
+ o0
C/? = Z A(k*Zm)lAm2 (25)
m=—o

where the superscript identifies the number of frequencies
involved. This scheme can be extended by convolving into
the spectrum the effects of higher harmonics, and this
leads to

(26)

for J harmonics. Finally, the spectrum of the overall phase
factor is found by substituting (26) into (24).

The quasiparticle current which tunnels through the
barrier in response to this modulation can be calculated by
using Werthamer’s relationship [16]:

<ﬁm=mﬂjf:mwmww)

+ 00
J-1
Z C((k—J,lz)AmJ

= —00

/=

w/
s S
O.Jg

i e_j(w/fw/')tf

dw'dw” (27)

where the junction is characterized by the function
(V) = (V) + (Vo) (28)
The imaginary part of this expression, I,(V,), is the
normalized~ dc characteristic of the tunnel barrier, and the
real part, I, (1), is the Kramers—Kronig transform of the
imaginary part, or
~ ~ 1 +°°‘fdc(r;0’)_l70/ 5
I, \V,)=—P — = dVy 29
kk( 0) T '/_00 (VZ)/—VZ)) 0 ( )
where P denotes the Cauchy principal value. The response
function of a typical Nb/AlOx/Nb junction is shown in
Fig. 2. The tunneling current is determined by substituting
the spectrum given by (24) into Werthamer’s expression,
and this leads to
dy=tm ¥ e (R,+Js,)

p=-

(30)
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where

« +oo
(R,+jS,)= ¥ CC*,. J(Py+ V). (31)
k=—w
Comparing this expression with (1) shows that
=<SP+S—P)—j(RP—R—P)' (32)
Therefore, the Fourier components of the tunneling cur-

rent can easily be calculated once the spectrum of the
overall phase factor is known.

III. SMALL-SIGNAL ANALYSIS

The conversion efficiency of a mixer can easily be calcu-
lated once the steady-state phase factor associated with the
local oscillator drive has been determined. The nature of
this calculation has been considered in some detail by
Tucker [1], and the following summary consists of his
equations presented in a slightly modified form.

The small-signal sideband voltages and currents can be
conveniently represented by the series

USG( 1) oo Vg SG
7 fesomt 33

iSG(t) m=z_w IgI,ﬁG ( )
where w,, = mw + wy, and w, is the angular intermediate

frequency. The sideband voltages and currents are linearly
related, for small signals, through the expression

I%6 = Z "z (34)

where ¥ is an admittance matrix which is normalized to
the normal-state admittance of the tunnel junction. The
elements of the matrix are given by (compare with [1, eq.
7.51)

. __j + o0 + 00
Ymm'= z(m,I}1PH+I71F) n=2;°o nl:Z_anC n8m m',n’—n
[E(P+ nPP) — [+ (n— m) PP~ D)

— (T + (W + m) VP + V) + *(V, + V)]

(35)

where P is the normalized IF photon voltage #w, /eVg
and the C coefficients are those of the steady-state local
oscillator phase factor. The IF photon voltage is usually
smaller than the voltage scale of the dc nonlinearity, and
therefore the output frequency may be treated classically.

Expanding the response function to the lowest order about
the bias and photon points leads to

o =
mm’ z(mlﬁlPH_i_I}IF)
+ o0
Z {[CnC*mfm’ﬂ—n_Cn)rm'C n+m]1(n)
+[C e —C,_ an*m]I*(n)
+ VT [Con Gl (1) = €,y Gt e T ()]}

(36)

where the result has been manipulated into a form suitable
for computing, and the notation has been simplified by
introducing

f(n)=[~(170+n171PH) (37)

and

'(n) = ?/[ 1(Vy+ nVFH)]. (38)

0
The admittance matrix can be regarded as representing a
multifrequency multiport network which has one port for
every sideband. The parallel connection of the junction
and the embedding circuit is described by an augmented
admittance matrix which can be inverted to give the
impedance matrix

1Z

mm'”

=Y.+ V.28

1
m,m’“

(39)

where it is assumed that each sideband is terminated with
an admittance Y%, The conversion gain G from the upper
sideband (m =1) to the IF output port (m=0) is then
given by

G = 4Re(YF)Re(VF)| 2ot

In this expression, YF and Y are the normalized source
and load admittances, respectively.

(40)

1V. MIXER ANALYSIS ALGORITHM

An algorithm has been developed for calculating the
harmonic performance of quasiparticle mixers. The algo-
rithm begins by normalizing and interpolating the dc char-
acteristic of the tunnel junction to produce a regularly
sampled function covering the voliage range 0 to 2V,. A
cubic spline routine is used for the interpolation to ensure
continuous first and second derivatives. The large-signal
current calculations and the small-signal admittance ma-
trix calculations reference the response function at discrete
photon points. Consequently, the sampling interval of the
processed characteristic determines the frequency resolu-
tion of the mixer analysis. The initialization sequence
continues by calculating the Kramers—Kronig transform of
the interpolated dc curve by numerical integration. The
integral of (29) has a singularity at V' =V,: therefore to
aid computation it is written as

Lu(Vo) = lim ; —[ Vo) + G(=V)] dvy” (41)
where
| B A A A

G(V”)— dc( 0 0) 0 0 (42)

The integrand is the even part of the function G(I/Z) ), w1th
the new variable V,” = ¥,/ — ¥, having its origin at v, =
Finally, the 1n1t1ahzat10n sequence calculates the derlva-
tives of both the dc curve and its transform. The file
created by this procedure contains a tabulated version of
the response function defined by (28).
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The linear circuit analysis routine begins by establishing
the Thévenin equivalent circuit of the local oscillator source
referenced to the electrodes of the tunnel junction. The
open-circuit voltage of the Thévenin source is then used as
an initial estimate of the large-amplitude voltage appearing
across the tunnel junction. The actual waveform of this
voltage is determined by the nonlinear circuit analysis part
of the algorithm.

The harmonic balance procedure starts by calculating
the quasiparticle current associated with the initial esti-
mate of the nonlinear voltage (V"),. For a general itera-
tion, the quasiparticle current is calculated by first deter-
mining the spectra of the phase factors associated with the
harmonic components of the exciting voltage. According
to (16) and (19), sequences of Bessel functions must be
generated. The Bessel functions in each sequence, all with
the same argument, have orders which range from some
maximurm positive integer to the same magnitude negative
integer. These sequences can be generated by backward
recurrence. An arbitrary guess is initially made at a high-
order Bessel function, and then the lower orders are suc-
cessively calculated by using the recurrence relationship

2n
a

hale) = | T i@ sl @

The precision of each order is increased in comparison
with its generating higher order, but because the initial
guess was arbitrary, the lower orders are relatively correct
but inaccurate. This problem can be overcome by normal-
izing the calculated sequence to the sum

Jo(a)+25(a)+20,(a) - 2Jy(a)

which should be unity. The recurrence calculation must
begin at a sufficiently high order to achieve the required
degree of accuracy in the highest order to be used in the
spectrum, Hence the optimum starting order depends on
how hard the junction is being pumped. For example, if it
is assumed that the arguments of the sequences do not
exceed 5, then the highest order to be considered is at the
very most 9, and it is sufficient to use J;4(a)=0 and
Jis(a) =1 10719 1o start the recurrence calculation. Once
the positive orders of the Bessel functions have been
obtained, the negative orders are simply given by

J_(e) = (=1)"J,(a). (45)

The next step towards determining the quasiparticle
current is to convolve the spectra of the harmonic phase
factors in the manner described by (25) and (26). It is then
straightforward to ascertain the quasiparticle current, from
the overall phase factor, by using (31) and (32). The
harmonic balance routine continues by calculating the
linear voltage which results from the quasiparticle current
being conducted through the Thévenin source. This voltage
is compared with the original estimate of the drive voltage,
and convergence is deemed to have occurred when the
ratios of the harmonic magnitudes are within +0.1 percent
of unity and the phases agree to within 0.5°. If conver-
gence has not occurred, then the nonlinear voltage' is

(44)
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TABLE I
THE DEFAULT PARAMETERS OF THE SIMULATED MIXER

v = 1 = .

g .0 v g 3.0mV
YPH - oazs f = 90GHz
V0 = 0.97 VO = Z.va
R = 10 R = 50n
75 - os 215 = 250
¥S _ S _
Z2 = 10.0 Z2 = 500N

reestimated by using (6) together with a convergence pa-
rameter which is chosen by means of the minimization
technique described by Hicks and Khan [9]. The whole
harmonic balance procedure is then repeated until a self-
consistent solution is found. Finally, the flow of the algo-
rithm is returned to the linear circuit analysis section,
where the admittance matrix and the conversion gain are
calculated by using (36) to (40).

V. EXAMPLE

The mixer analysis algorithm described in Section IV
has been implemented as a Fortran program on a Mi-
crovax Il minicomputer, and a number of simulations have
been performed to determine the range of wCR products
for which harmonic effects are important. It is convenient,
for the purpose of demonstrating the algorithm, to report
the results of a simplified simulation which adequately
reflects the principal features of the full calculations. Two
simplifications have been made in order to simplify the
presentation. The first is that only the fundamental and
the second harmonic are considered to be present in the
junction drive waveform. This is a good approximation for
junctions having an wCR product of greater than about
unity. The second is that the harmonic sidebands are
assumed to be open circuited even though the harmonic of
the local oscillator is terminated with a finite impedance.
This situation does not occur in a real mixer and therefore
the assumption is somewhat artificial. However, it has the
advantage that only the signal, image, and intermediate
frequencies are coupled through the admittance matrix,
and therefore the complicated mechanism by which the
sideband terminations influence the conversion efficiency
can be ignored.

The nonlinear circuit analysis part of the algorithm has
been used to investigate the waveform of the large-ampli-
tude voltage which appears across the junction of Fig. 2
when it is installed in a mixer circuit having the default
characteristics listed in Table I. In general it has been
found that the harmonic balance procedure almost always
converges in less than 20 iterations as long as a normalized
resistive identity element [9] of 0.5 to 1.0 is used. A



WITHINGTON AND KOLLBERG: SPECTRAL-DOMAIN ANALYSIS OF HARMONIC EFFECTS

03
0.5
0+2 1+0
o~ o
7 2.0 o
6 3
0+t 3.0
40
5¢0
0 I 1 L 1 i 1 I
0 2 4 6 8 10 1 14
Re('i'g)

Fig. 4. The magnitude of the second harmonic drive a, as a function of
the second harmonic embedding resistance Re(ZS) for parametnc
values of the wCR product. The default parameters of the mixer are
summarized in Table I, and the response function of the junction is
shown in Fig. 2.
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Fig. 5. The conversion gain G as a function of the wCR product. The
default parameters of the mixer are summarized in Table I, and the
response function of the junction is shown in Fig. 2. The normalized
signal source and load resistances are 0.5 and 0.75, respectively.

complete large- and small-signal analysis usually takes less
than 0.5 s, which is considerably faster than can be achieved
with a time-domain calculation. The spectral method is
markedly superior, even when a greater number of har-
monics are included. Fig. 4 shows the magnitude of the
second harmonic drive voltage a, as a function of the
second harmonic embedding resistance Re(Z5) for para-
metric values of the wCR product. The local oscillator
source voltage has been held constant at a,= 4.0, which
results in a; =1.4 for wCR <4.0 and Re(Z2) =10, be-
cause this is the drive level which optimizes the conversion
efficiency when the mixer is biased in the middie of the
first photon step below the gap. Fig. 4 demonstrates that a
significant amount of harmonic pumping can occur when
the wCR product is less than about 3; furthermore, it
shows that the level of this pumping is relat1ve1y indepen-
dent of the embeddmg resistance when Re(Z5) > 2.

The conversion gain of the above mixer has been calcu-
lated as a function of the wCR product of the junction,
and the results are shown in Fig. 5. The normalized signal
source and load resistances were set equal to 0.5 and 0.75,
respectively, and the local oscillator source voltage was
once again held constant at o, = 4.0. For each value of the
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wCR product the junction’s capacitive reactance was tuned
out at the signal frequency by a parallel susceptance. The
conversion gain is significantly reduced for «CR products
of less than about 4. In some simulations the gain begins
to rise as the wCR product is reduced below unity, but this
effect has not been studied in any detail. The curve shown
in Fig, 5 is characteristic of the results of complete simula-
tions, and it is in agreement with the time-domain calcula-
tions of [10] and the experimental data discussed in {7]. It
seems that an wCR product of between 3 and 4 is a good
compromise between being able to tune out the capaci-
tance at the signal frequency, and avoiding the deleterious
effects of inadvertent harmonic pumping.

VI. CONCLUSIONS

An algorithm has been developed for calculating the
harmonic performance of superconducting quasiparticle
mixers. An iterative harmonic balance procedure is used to
determine the waveform of the large-amplitude voltage
induced across the tunnel junction by the local oscillator
source. During each iteration, the harmonic balance rou-
tine must calculate the periodic quasiparticle current which
tunnels through the junction when a periodic voltage is
applied. It has been demonstrated that it is possible to do
this calculation much more efficiently in the frequency
domain than in the time domain. The difference in speed is
particularly pronounced when modeling mixers which in-
corporate junctions having very sharp dc nonlinearities.
The new algorithm provides, for the first time, an analysis
method which is sufficiently fast to enable the harmonic
performance of a wide variety of mixer designs to be
investigated.

A simplified mixer simulation has been performed to
determine the range of wCR products for which internal
harmonic pumping is likely to be important. It appears
that harmonic effects can significantly reduce the conver-
sion efficiency if the wCR product of the junction is less
than about 4., This is sufficiently low to enable broad-band
mixers to be constructed; therefore it is tentatively con-
cluded that the optimum value of the wCR product is 4.
This conclusion is, however, based on a number of specific
simulations and it should not be assumed to apply in all
cases. Nevertheless, it is a useful guideline which can be
applied when the harmonic impedances are unknown.
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