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Spectral-Domain Analysis of Harmonic
Effects in Superconducting

Quasiparticle Mixers

STAFFORD WITHINGTON AND ERIK L. KOLLBERG, SENIOR MEMBER, IEEE

Abstract —An afgorithm has heen developed for calcofating the har-

monic performance of superconducting quasiparticle millimeter-wave mix-

ers. The w.?heme uses harmonic bafance to determine the steady-state

waveform of the large-amplitude voltage which is induced across the tunnel

junction by the Ioeal oscillator source. A key featare of the new algorithm

is that the large-signaf tmsnefing-current’ cafcufations are done in the

frequency domain rather than in the time domain, and this approach leads

to numerbfly efficient computer simnfations. The superiority of the

speetraf-domain method is particularly pronounced when modeling mixers

which incorporate high-quafity tunnel jum%ons with very sharp dc nonlin-

earities. A simplified mixer simulation has been performed to determine

the range of oCR prodncts for which fiarrnonic effects are likely to be

important. An uCR product of between ~ and 4 appems to be a good

compromise between being able to tune out the capacitive reactance at the

signal frequency and avoiding the deleterious effeets of inadvertent har-

monic pumping.

1. lNTRODUcTION

T HE OPERATION of a superconducting quasiparticle

mixer can be modeled by using the quantum theory of

mixing developed by Tucker [1]. This theory predicts that a

mixer will cease to behave classically when the voltage

width of the dc nonlinearity is smaller than or comparable

with the photon energy h ti/e of the incident radiation.

The transition from classical to quantum behavior has

some remarkable consequences, including the appearance

of quantum-limited noise temperatures h ti/k and conver-

sion gain [2], both of which have been seen experimentally

[3]-[5]. A comprehensive review of Tucker’s quantum the-

ory of mixing and its experimental verification has been

published recently [6].

In almost every case the quantum theory of mixing has

been applied by assuming that the large-signal local oscil-

lator voltage appearing across the junction is sinusoidal, or

equivalently that the capacitance C of the junction shorts

out harmonic currents. This idealization allows the equa-

tions describing the mixing process to be expressed in a
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relatively simple form. However, the simplified version of

the theory is only applicable provided that the susceptance

& of the tunnel junction is’ several times that of the

normal-state conductance l/R. There is considerable ex-

perimental evidence [7], in the form of unexpectedly low

conversion efficiencies and high noise temperatures, that

harmonic effects are important for tJCR products of less

than about 4. Conversely, there are complications associ-

ated with using junctions having uCR products much

greater than 4, because the ‘capacitive reactance ‘must be

neutralized at the signal frequency; ‘yet it is difficult to

construct broad-band” matc@ng networks at millimeter

wavelengths. If the full potenti~ of the quasiparticlq mixer

is to be realized, then a theoretical technique is, required

whereby the harmonic effects wkch occur in low-capaci-

tance tunnel-junction mixers can be analyzed. Further

motivation for developing such a technique comes from

the need to model subharmonically pumped mixers [8].

This paper presents an algorithm for calculating the

harmonic performance of superconducting quasiparticle

mixers. The scheme uses harmonic balance [9] to deter-

mine the steady-state waveform of the large-amplitude

voltage induced across the tunnel junction by the local

oscillator source. A key feature of the algorithm presented

in this paper is that the large-signal tunneling-current

calculations are done in the frequency domain.’ This ap-

proach is in contrast to the work of Hicks, Feldman, and

Kerr [10], where the calculations were done in the ti’me

domain. The spectr~-domain method is considerably faster

when implemented a’sa computer program, especially when

modeling mixers which incorporate .~gh-quality tunnel

junctions having very shafi dc nonlineari”ties.

II. LARGE-SIGNAL ANALYSIS

A. The Mixer Circuit

Fig. 1 shows an equivalent circuit which is suitable for

analyzing the response of a superconducting tunnel junc-

tion when it is excited by a large-amplitude local oscillator
voltage. The voltage generator and’ its “series impedance

represent the local oscillator source referenced to the elec-

trodes of the tunnel junctio~ and the parallel impedance

takes account of the geometric’ capacitance of the tunnel
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Fig. 1. A large-signaf equivalent circuit of a superconducting quasipar-
ticle mixer.

barrier. This simple circuit adequately reflects the principal

features of quasiparticle mixers while limiting the complex-

ity of the large-signal analysis; consequently it is suitable

for introductory simulations. However, it maybe desirable

when modeling actual mixers to consider more elaborate

embedding net works and these analyses can easily be done

by extending the basic method described below.

The voltage source shown in Fig. 1 is assumed to be

sinusoidal with an angular frequency a. This source in-

duces periodic potentials throughout the circuit but in

general these are not sinusoidal owing to the influence of

the nonlinear tunnel barrier. In the steady state, the vari-

ous voltages and currents can be expanded as Fourier

series having the generic form

Particular variables are identified by attaching superscripts

to the Fourier coefficients, and normalization is denoted

by a tilde. For example in Fig. 1, @ is a vector whose

elements ~PS(p = O, +1, +2, . -. ) are the Fourier coeffi-

cients of the normalized local oscillator voltage. Similarly,

~S is a vector whose elements ~~ (p= O, +1, +2, . ..)
are the normalized harmonic impedances of the local oscil-

lator source. A variable with its subscript missing is a

vector representing a number of harmonic frequencies. In

this paper, all of the electrical quantities are normalized to

the dc characteristic of the turmel junction. The circuit

voltages are scaled to a bias voltage Vg which is arbitrarily

chosen close to the energy gap, and the circuit currents are

scaled to the current Ig which would flow as a result of Vg

being applied to the normal-state resistance of the junction

(lg = V8/R). For convenience, these reference quantities

can be called the gap voltage and the gap current, but they
do not have any particular physical significance. One ad-

vantage of normalizing the voltages and currents in this

way is that the circuit impedances become normalized to

the normal~state resistance of the junction. Hence it is

possible to analyze the performances of actual mixers with

only a limited number of standard numerical models.

B. The Harmonic Balance Procedure

The first step in analyzing a mixer circuit is to determine

the steady-state waveform of the large-amplitude voltage

fi~ induced across the tunnel junction by the local oscilla-

tor. Once this information is known it is possible to

calculate the small-signal admittance matrix. Determining

the vector ~~ is in general a difficult nonlinear problem

because it is necessary to search for a solution which

simultaneously satisfies the circuit equations at every har-

monic frequency. Various harmonic balance techniques

have been devised for handling this type of problem [11]

but the relaxation method of Hicks and Khan [12], [13] is

particularly easy to realize and therefore it is the one used

here.

To implement the procedure, it is first necessary to

partition the circuit into two subnetworks, one containing

the linear embedding circuit and the other the nonlinear

tunnel junction. The harmonic relaxation method is an

iterative process which in one form seeks to match the

Fourier components of the voltages, across the branch

connecting the two subnetworks, on either side of the

partition. These are termed the linear voltage fi= and the

nonlinear voltage VN, and they must be equal when a

satisfactory solution has been found. It is convenient to

replace the local oscillator voltage source and the linear

embedding network with a Th&enin source which has an

open-circuit voltage of

FS2J
P’= ~zs+z,)

and an internal impedance of

The harmonic balance procedure begins

estimate of the nonlinear voltage ~N.

(2)

(3)

by making a rough

This waveform is

simply taken to be the open-circuit voltage of the Th6venin

source and therefore the first guess is purely sinusoidal.

The initial guess can be written

(@)l=F’ (4)

where the subscript outside the parentheses identifies the

iteration number. The next step is to use this voltage to

calculate the associated quasiparticle current ~N. Continu-
“N be equal to the current following outity requires that 1

of the linear embedding network – IL; consequently the

associated linear voltage is given by

(@)l=@-(fJv),2~. (5)

(fi~)l can then be compared with (~N)l to see if a valid

solution has been found. At this early stage they are
generally not equal and the nonlinear voltage is reesti-

mated by using

(fiN),+l= P(@). +(l-P)(~N)., O<P<l (6)

where P is a convergence parameter. The whole procedure

is then repeated until a self-consistent solution is found or

until a predefine number of iterations have been exe-

cuted.

The voltage-update method has been chosen in prefer-

ence to the current-update method for two reasons. First,

Tucker’s theory allows the tunneling current to be calcu-

lated directly from the impressed voltage but the current-
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Fig. 2. The normalized dc characteristic ~C( ~) ?f a-Nb/AIOx/Nb
tunnel junction. The Kramers-Kronig transform Zkk( VO) of this func-
tion is also shown.

update method requires the current to be the independent

variable. Second, the impedances presented to the tunnel

barrier at high harmonic frequencies are dominated by the

capacitance of the junction, and therefore they are close to

being short circuits. When this is the case, the voltage-

update method converges faster than the current-update

method. An assessment of the convergence properties of

the two closely related schemes can be found in the origi-
nal work of Hicks and Khan [12].

C. Time-Domain Analysis

The harmonic balance procedure requires that the peri-

odic quasiparticle current can be calculated from the peri-

odic voltage appearing across the junction. It will be

shown below that it is numerically inefficient to do this

calculation in the time domain.

A quasiparticle tunnel junction is characterized in the

time domain by a response function ~(t) [14] which has

the normalized form

~ [fdc(:)-:le-’”’rdo’‘7)J(t) = ;/::

where ~g is the angular frequency associated with the

normalizing gap voltage ( Ug = eVg/fi ), and ~~C(PO) is the

normalized dc characteristic of the tunnel barrier. For

example, Fig. 2 shows the normalized characteristic of a

Nb/AIOx/Nb junction [15]. A perfect device with an

infinitely sharp nonlinearity has a response function 4’(t)

which oscillates at the gap frequency. Furthermore, the

amplitude of J(t) falls off inversely with time at large

times. The instantaneous tunneling current is therefore

influenced by the voltage which existed across the junction

at very long times in the past. However, a real junction has

a nonlinearity which is smeared over a finite voltage range,

and the question arises as to how far into the past the

voltage must be considered when calculating the tunneling

current. Insight into this question can be gained by multi-

plying the response function of the perfect barrier by a

Gaussian function having a half-width of At, giving

~(t) = J’(t) e-( ’zA’)’. (8)

Equation 7 suggests that, to a first approximation, the dc

characteristic associated with the modified response func-

tion is effectively the ideal dc characteristic convolved with

the Fourier transform of the modifying function, and this

transform is a Gaussian having a half-width Au’ of 2/At.

The effect of the convolution is to smear out the infinitely

sharp nonlinearity. Hence, the vcitage width A~& of the

transition region becomes approximately l/At& where fg

is the gap frequency. This last expression has been derived

by truncating the Gaussian, with which the ideal dc char-

acteristic is convolved, at the 5 percent level. The number

N of gap frequency cycles into the past for which the

response function must be considered is 1.7A~dC, where the

time-domain Gaussian has also been truncated at the 5

percent level in order to prevent spurious effects due to

Gibb’s phenomena. For example, a lead alloy junction

may have a A~dC of typically 0.15; therefore 12 cycles of its

response function are sufficient tcl represent the junction.

If each cycle is sampled at ten points, then a 120 point

analysis is required in order to calculate the tunneling

current atza single instant in time. 14 niobium junction may

have a AV~cof typically 0.03; consequently 57 cycles of its

response function must be considered, and if each is sam-

pled at ten points then a 570 point analysis is required for

every tunneling current calculation. It is evident from this

discussion that the computing time required for a single

harmonic balance iteration increases dramatically as the

quality of the junction is improved.

D. Frequency-Domain Analysis

It will now be shown how the quasiparticle current can

be calculated very much more efficiently in the frequency

domain. The periodic voltage appearing across the junc-

tion modulates the quasiparticle energy eigenstates on one

side of the barrier by the phase factor

j’(t) = e-Jwg~L@[fiN(’”)- ‘iO]d” (9)

where the effect of the dc bias voltage ~0 is removed. This

phase factor can be represented in the spectral domain by

the Fourier transform

W(d) = ~~_+mf(t)eJW’’dt. (lo)
m

Moreover, the steady-state voltage across the junction is

periodic, and therefore it can be written

@’(t’) = PO+~ Iv$’lcos(pcot’++p) (11)
~=1

Lwhere @P= fipN and fiO = fiON/2. The phase factor which

results from this modulation is found by substituting (11)

into (9), giving

f(t) = ~-J%= @,sln(p@l+%) (12)

(13)
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P= 1 For example, suppose that the voltage across the junc-
A-41 A-31 A-21 A-11 Afjl All A21 A31 A41 tion consists of only the fundamental and the second

t I I I I 11, harmonic. The spectrum of the overall phase factor be-

}’ 1 I I I 1 I 1 I
t comes

P=.2

A-22 A_12 +02 A12 A22

P= 3
A-13 A03 A13

and
t 4

P=h
A_14 A04 A14

W(td’)=J+mW1(Z4)W2(LJ–u)du
—m

+Ca

w,(u) = ~ Anp(u-izcd)
n=—cc

w2(@’–ll) = ~ Am2a(@’–u–2wzQ).

Assuming that the resulting spectrum has the form
& J
-.4 -3 -2 -1 0 1 2 3 4’

w’/ul
W(d) = ‘Em C@(cJ - kti)

k=–m
Fig. 3. The spectra WP( o’) of the phase factors associated with the first

four harmonics of the periodic large-signal tenninaf voltage. it can be shown that
+03

C:= x A(k-zm)lAmz
and fi~pH is the normalized photon voltage of the p th ~.—~

(21)

(22)

(23)

(24)

(25)

harmonic. Similarly, it is convenient to use
where the superscript identifies the number of frequencies

(i@:l involved. This scheme can be extended by convolving into
~8=— (14) the spectrum the effects of higher harmonics, and this

U
leads to

for the local oscillator source voltage. By using the

Jacobi–Anger eqtmlity, (12) can be written in the form Cl= ~~~ C&!&AM~ (26)

f(t) = H ‘~~ AnPe-jnP”z
’15) for J harmonics. Final~~~~spectrum of the overall phasep=ln=–m

factor is found by substituting (26) into (24).
where the complex coefficients are given by The quasiparticle current which tunnels through the

A~P = Jn(ap)e-Jn*p. (16)

Expanding (15) and retainihg only the first J harmonics

leads to

(17)

where

The function gp(t) represents the influence of the pth

harmonic on the overall phase factor, and the spectrum

WP( w’) of this contribution is found by substituting (18) in
to (10), giving

*’X

Wp(d) = ~ A.P8(u’–,npti). (19)
~=—~

barrier in response to this modulation can be calculated by

using Werthamer’s relationship [16]:

where the junction is characterized by the function

(28)

The imaginary part of this expression, ~~C(flO), is the

normalized dc characteristic of the tunnel barrier, and the

real part, ~~k( PO), is the Kramers-Kronig transform of the

imaginary part, or

The spectra associated with the first four harmonics are where P denotes the Cauchy principal value. The response

shown scheniatically in, Fig. 3. Multiplication in the time function of a typical Nb/AIOx/Nb junction is shown in

domain is equivalent to convolution in the frequency do- Fig. 2. The tunneling current ii determined by substituting

main; therefore the spectrum of the overall phase factor the spectrum given by (24) into Werthamer’s expression,

becomes and this leads to

W(ti’) ‘Wi(@’)*WJ(ti’) -0- W~(6.)’) (20) (~(t)) =Im ~ ey’”’(fi,+j~) (30)
where the asterisk denotes convolution. P=. m
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where
. -4-Co

(k, + @J = z C,C*,+J(% + kq’H). (31)
k=–w

Comparing this expression with (1) shows that

~~=($+i_,) -j(&fi_p). (32)

Therefore, the Fourier components of the tunneling cur-

rent can easily be calculated once the spectrum of the

overall phase factor is known.

III. SMALL-SIGNAL ANALYSIS

The conversion efficiency of a mixer can easily be calcu-

lated once the steady-state phase factor associated with the

local oscillator drive has been determined. The nature of

this calculation has been considered in some detail by

Tucker [1], and the following summary consists of his

equations presented in a slightly modified form.

The small-signal sideband voltages and currents can be

conveniently represented by the series

where Ow = ma + tie, and o+ is the angular intermediate

frequency. The sideband voltages and currents are linearly

related, for small signals, through the expression

~sG = ~ ~~~,fi:~
m (34)

m’

where ~ is an admittance matrix which is normalized to

the normal-state admittance of the tunnel junction. The

elements of the matrix are given by (compare with [1, eq.

7.5])

Prom?=
- J“ ) .Em.E*cnc*n’8m-m’’”’”n2(m’ti~H + VIF

.[f(FO+ nF~H)-f(tiO+(n,- m’)P~H-~l’)

- f“(ro+ (n’+ n?’)PyH+ F“)+ i“(vo+ ?z’tijH)]

(35)

where ~IF is the normalized IF photon voltage fi coO/e Vg

and the C coefficients are those of the steady-state local

oscillator phase factor. The IF photon voltage is usually

smaller than the voltage scale of the dc nonlinearity, and

therefore the output frequency may be treated classically.

Expanding the response function to the lowest order about

the bias and photon points leads to

Y&/ =
–3’

2(nz’zp + V*F)

“ Y {[cnc”m.m).. - cn+mc”n+mlf(~)
~=—~

+[cn.m+mrcn”– cn_mcnlm)]fi(lz)

+ P[cn+mtc;+mf’(lz) – Cn-mc:-m,f’”(lz)]}
(36)

where the result has been manipulated into a form suitable

for computing, and the notation has been simplified by

introducing

i(n) =f(Fo+nJ7~H) (37)

and

r’(n)=;[l(z+ nip)].
o

(38)

The admittance matrix can be regarded as representing a

multifrequency multiport network which has one port for

every sideband. The parallel connection of the junction

and the embedding circuit is described by an augmented

admittance matrix which can be inverted to give the

impedance matrix

112m,m/11= /lfmmr + Y;8m,m,/1-’ (39)

where it is assumed that each sideband is terminated with

an admittance ~~. The conversion gain G from the upper

sideband (m ==1) to the IF output port (m = O) is then

given by

G=4Re(~~)Re(~)l~olt2. (40)

In this expression, ~~ and ~~ are the normalized source

and load admittances, respectively.

IV. MIXER ANALYSIS ALGORITHM

An algorithm has been developed for calculating the

harmonic performance of quasiparticle mixers. The algo-

rithm begins by normalizing and interpolating the dc char-

acteristic of the tunnel junction to produce a regularly

sampled function covering the voltage range O to 2Vg. A

cubic spline routine is used for the interpolation to ensure

continuous first and second derivatives. The large-signal

current calculations and the small-signal admittance ma-

trix calculations reference the response function at discrete

photon points. Consequently, the sampling interval of the

processed characteristic determines the frequency resolu-

tion of the mixer analysis. The initialization sequence

continues by calculating the Kramers-Kronig transform of

the interpolated dc curve by numerical integration. The

integral of (29) has a singularity at fro’= fro; therefore to

aid computation it is written as

where

The integrand is the even part of the function 6( fro”), wi~h

the new variable PO” = PO’ – PO having its origin at flo’ = Vo.

Finally, the initialization sequence calculates the deriva-

tives of both the dc curve and its transform. The file

created by this procedure contains a tabulated version of

the response function defined by (28).
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The linear circuit analysis routine begins by establishing

the Th6venin equivalent circuit of the local oscillator source

referenced to the electrodes of the tunnel junction. The

open-circuit voltage of the Th6venin source is then used as

an initial estimate of tbe large-amplitude voltage appearing

across the tunnel junction. The actual waveform of this

voltage is determined by the nonlinear circuit analysis part

of the algorithm.

The harmonic balance procedure starts by calculating

the quasiparticle current associated with the initial esti-

mate of the nonlinear voltage ( fi~ )l. For a general itera-

tion, the quasiparticle current is calculated by first deter-

mining the spectra of the phase factors associated with the

harmonic components of the exciting voltage. According

to (16) and (19), sequences of Bessel functions must be

generated. The Bessel functions in each sequence, all with

the same argument, have orders which range from some

maximum positive integer to the same magnitude negative

integer. These sequences can be generated by backward

recurrence. An arbitrary guess is initially made at a high-

order Bessel function, and then the lower orders are suc-

cessively calculated by using the recurrence relationship

2n ‘
Jn_l(u) =

(1
— Jn(a)– Jn+l(~). (43)
a

The precision of each order is increased in comparison

with its generating higher order, but because the initial

guess was arbitrary, the lower orders are relatively correct

but inaccurate. This problem can be overcome by normal-

izing the calculated sequence to the sum

Jo(a) +2 J2(a)+2J4(a) .0 .2.TN(a) (44)

which should be unity. The recurrence calculation must

begin at a sufficiently high order to achieve the required

degree of accuracy in the highest order to be used in the

spectrum. Hence the optimum starting order depends on

bow hard the junction is being pumped. For example, if it

is assumed that the arguments of the sequences do not

exceed 5, then the highest order to be considered is at the

very most 9, and it is sufficient to use JIG(a) = O and

J15( a) = 1 ~ 10-10 to start the recurrence calculation. Once

the positive orders of the Bessel functions have been

obtained, the negative orders are simply given by

L,,(a) = (-l) ’lJn(a). (45)

The next step towards determining the quasiparticle

current is to convolve the spectra of the harmonic phase

factors in the manner described by (25) and (26). It is then

straightforward to ascertain the quasiparticle current, from

the overall phase factor, by using (31) and (32). The

harmonic balance routine continues by calculating the

linear voltage which results from the quasiparticle current

being conducted through the Th&enin source. This voltage

is compared with the original estimate of the drive voltage,

and convergence is deemed to have occurred when the

ratios of the harmonic magnitudes are within + 0.1 percent

of uni~y and the phases agree to within 0.50. If conver-

gence has not occurred, then the nonlinear voltage is

TABLE I
THE DEFAULT PARAiWETERSOFTHE SIMULATEDMI=R

v
9

= 1.0 v
9

= 3.0 mV

- PH
‘1

= 0.125 f = 90GHZ

To = 0.97
‘o

. 2.9mV

Z = 1.0 R = 5on

21s = 0.5
s

‘1
. 25n

y2s = 10.0 Z2S . 5oon

reestimated by using (6) together with a convergence pa-

rameter which is chosen by means of the minimization

technique described by Hicks and Khan [9]. The whole

harmonic balance procedure is then repeated until a self-

consistent solution is found. Finally, the flow of the algo-

rithm is returned to the linear circuit analysis section,

where the admittance matrix and the conversion gain are

calculated by using (36) to (40).

V. EXAMPLE

The mixer analysis algorithm described in Section IV

has been implemented as a Fortran program on a Mi-

crovax H minicomputer, and a number of simulations have

been performed to determine the range of tiCR products

for which harmonic effects are important. It is convenient,

for the purpose of demonstrating the algorithm, to report

the results of a simplified simulation which adequately

reflects the principal features of the full calculations. Two

simplifications have been made in order to simplify the

presentation. The first is that only the fundamental and

the second harmonic are considered to be present in the

junction drive waveform. This is a good approximation for

junctions having an uCR product of greater than about

unity. The second is that the harmonic sidebands are

assumed to be open circuited even though the harmonic of

the local oscillator is terminated with a finite impedance.

This situation does not occur in a real mixer and therefore

the assumption is somewhat artificial. However, it has the

advantage that only the signal, image, and intermediate
frequencies are coupled through the admittance matrix,

and therefore the complicated mechanism by which the

sideband terminations influence the conversion efficiency

can be ignored.
The nonlinear circuit analysis part of the algorithm has

been used to investigate the waveform of the large-ampli-

tude voltage which appears across the junction of Fig. 2

when it is installed in a mixer circuit having the default

characteristics listed in Table L In general it has been

found that the harmonic balance procedure almost always

converges in less than 20 iterations as long as a normalized

resistive identity element [9] of 0.5 to 1.0 is used. A
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Fig. 4. The magnitude of the second harmonic drive w as a fun

w CR product the junction’s capacitive reactance was tuned

out at the signal frequency by a parallel susceptance. The

conversion gain is significantly reduced for COCRproducts

of less than about 4. In some simulations the gain begins

to rise as the oCR product is reduced below unity, but this

effect has not been studied in any detail. The curve shown

in Fig. 5 is characteristic of the results of complete simula-

tions, and it is in agreement with the time-domain calcula-

tions of [10] and the experimental data discussed in [7]. It

seems that an oCR product of between 3 and 4 is a good

compromise between being able to tune out the capaci-

tance at the signal frequency, and avoiding the deleterious

effects of inadvertent harmonic pumping.
lction of

~he second h&monic embedding resistance Re( ~~1 for parametric
values of the oCR product. The default parameters of the mixer are
summarized in Table I, and the response function of the junction is
shown in Fig. 2.

0

L 1/ I

o 2 4 6 8 10

OJCR

Fig. 5. The conversion gain G as a function of the oCR product. The
default parameters of the mixer are summarized in Table I, and the
response function of the junction is shown in Fig. 2. The normalized
signaf source and load resistances are 0.5 and 0.75, respectively.

complete large- and small-signal analysis usually takes less

than 0.5s, which is considerably faster than can be achieved

with a time-domain calculation. The spectral method is

markedly superior, even when a greater number of har-

monics are included. Fig. 4 shows the magnitude of the

second harmonic drive voltage az as a function of the

second harmonic embedding resistance Re ( ~~) for para-

metric values of the a CR product. The local oscillator

source voltage has been held constant at a,-= 4.0, which

results in al= 1.4 for tiCR <4.0 and Re( Z:) =10, be-

cause this is the drive level which optimizes the conversion

efficiency when the mixer is biased in the middle of the

first photon step below the gap. Fig. 4 demonstrates that a

significant amount of harmonic pumping can occur when

the oCR product is less than about 3; furthermore, it

shows that the level of this pumping is relatively indepen-

dent of the embedding resistance when Re(~j) >2.
The conversion gain of the above mixer has been calcu-

lated as a function of the uCR product of the junction,

and the results are shown in Fig. 5. The normalized signal

source and load resistances were set equal to 0.5 and 0.75,

respectively, and the local oscillator source voltage was

once again held constant at a, = 4.0. For each value of the

VI. CONCLUSIONS

An algorithm has been develc~ped for calculating the

harmonic performance of superconducting quasiparticle

mixers. An iterative harmonic balance procedure is used to

determine the waveform of the large-amplitude voltage

induced across the tunnel junction by the local oscillator

source. During each iteration, the harmonic balance rou-

tine must calculate the periodic quasiparticle current which

tunnels through the junction when a pe~odic voltage is

applied. It has been demonstrated that it is possible to do

this calculation much more efficiently in the frequency

domain than in the time domain. The difference in speed is

particularly pronounced when mc~deling mixers which in-

corporate junctions having very sharp dc nonlinearities.

The new algorithm provides, for tlhe first time, an analysis

method which is sufficiently fast to enable the harmonic

performance of a wide variety of mixer designs to be

investigated.

A simplified mixer simulation has been performed to

determine the range of oCR products for which internal

harmonic pumping is likely to be important. It appears

that harmonic effects can significimtly reduce the conver-

sion efficiency if the oCR product of the junction is less

than about 4. This is sufficiently low to enable broad-band

mixers to be constructed; therefore it is tentatively con-

cluded that the optimum value of the oCR product is 4.

This conclusion is, however, based on a number of specific

simulations and it should not be assumed to apply in all

cases. Nevertheless, it is a useful guideline which can be

applied when the harmonic impedances are unknown.
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